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Global and Local Nonlinear System Responses

under Narrowband Random Excitations. II:
Prediction, Simulation, and Comparison

Dongjun Yuk1; Solomon C. Yim, M.ASCE2; Arvid Naess, M.ASCE3; and I-Ming Shih4

Abstract: The response behavior of the single-degree-of-freedom �SDOF� nonlinear structural system subjected to narrowband stochastic
excitations studied in Part I is investigated via simulations to verify the stochastic system characteristics assumed in the development of
the semianalytical method. In addition, to demonstrate the accuracy of the method, predicted response–amplitude probability distributions
are presented and compared to simulation results. Numerical simulations are conducted by directly integrating the SDOF system with the
narrowband excitation modeled by the 1971 Shinozuka formulation. It is observed that the proposed semianalytical method is capable of
accurately characterizing the stochastic response behavior of the nonlinear system by predicting the response–amplitude probability
distribution and capturing the trends of variations in the response–amplitude statistical properties. In both the primary and the subhar-
monic resonance regions, good agreements between the response–amplitude probability distributions predicted by the semianalytical
method and obtained from simulation results are observed both qualitatively and quantitatively. In addition, trends of the variations in the
probability masses associated with the modes with variations in excitation parameters �bandwidth and variance� are captured.
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Introduction

The response of a nonlinear oscillator under narrowband random
excitation exhibits complex behavior including amplitude jump
phenomena �global bifurcation�, subharmonic response, super-
harmonic response, and even chaotic response �Nayfeh and
Mook 1979; Guckenheimer and Holmes 1986�. Knowledge of
the behavior of a nonlinear oscillator can be utilized in various
design application areas including structural, mechanical, and
aerospace engineering, etc. To analyze these complex response
behaviors, a semianalytical methodology is developed in Part I
�Yim et al. 2006� based on the understanding of the nonlinear
system response characteristics under deterministic excitations
and the assumptions of a narrowband stochastic excitation. In
addition, both the excitation–amplitude and the response–
amplitude processes are approximated as stationary Markov pro-
cesses. The attraction–domain transitions are modeled as a sta-
tionary Markov chain.

The formulation of the governing probability transition matrix
developed in Part I is directly related to the excitation bandwidth
and variance, as well as the amplitude jump phenomena of the
nonlinear system. The probability of the system response being
in an attraction domain can be obtained by solving the eigenvec-
tor of the probability transition matrix corresponding to the unit
eigenvalue.

The governing equation for the response–amplitude pertur-
bation probability within the response–amplitude domains corre-
sponding to two excitation amplitudes is also formulated based
on the Markov approximation. The transition probability density
function depends on the system transient–state response charac-
teristics as well as the excitation bandwidth and variance.

In this companion �Part II� study, the verification and calibra-
tion of the prediction capability of the semianalytical method de-
veloped and the numerical simulations based on Shinozuka
�1971� and Shinozuka and Deodatis �1991� presented in Part I are
conducted and compared with predictions from the proposed
analysis method. The influences of varying excitation bandwidth
and variance parameters on the response behavior are investi-
gated. Furthermore, comparisons of the accuracy of prediction
results by the proposed semianalytical method and two existing
analytical methods, namely, stochastic averaging method �Roberts
and Spanos 1986� and quasi-harmonic method �Lin and Yim
1997�, are conducted against simulation histograms.

Stochastic Response Behavior

Jump Phenomenon „Global Bifurcation…

The system response under a narrowband excitation exhibits am-
plitude jumps between two distinct levels as shown in Fig. 1. To
depict the mechanism of this global bifurcation behavior, an
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amplitude–response map is employed. The map is obtained by
plotting the excitation amplitudes versus the corresponding mea-
sured response amplitudes, as shown in Fig. 2. In addition, the
corresponding analytical response–amplitude curves of the sys-
tem are presented as solid lines, in Fig. 2. It is revealed that the
characteristics of the deterministic response attraction–domain
transition behavior depicted in Part I is preserved under a narrow-
band excitation environment. Namely, the system response goes
from the large-amplitude domain to the small-amplitude domain
when the excitation amplitude varies from a value greater than to
a value less than the large-amplitude domain lower boundary.

Subharmonic Responses

An examination of the details of response time series �e.g., Fig. 1�
reveals the repeated occurrence of 1/2 and 1/3 subharmonic re-
sponses under narrowband excitations. For the system with pa-
rameters given in Fig. 1, the system response oscillates at two
distinct amplitude levels. These subharmonic responses are often
difficult to identify due to overlapping of the different response
amplitude domains among the small amplitude, 1/2 and 1/3 sub-
harmonic domains. However, the existence of these responses can
be identified relatively clearly in the associated amplitude re-
sponse maps �e.g., Fig. 2� by observing the significant number of
points located along the analytical subharmonic amplitude–
response curves �shown as the solid lines�.

From the response–amplitude maps, it is observed that the
system response may enter the 1/2 or the 1/3 subharmonic domain
when an exit from the large amplitude harmonic domain occurs.
As a result, the subharmonic responses may occur repeatedly,
although the duration of stay in each visit of the system response
in these domains may be relatively short. Note that the existence
of the 1/3 subharmonic response under narrowband excitation
was also observed in simulations conducted in previous studies
�Davies and Nandall 1986; Davies and Rajan 1988; Rajan and
Davies 1988; Davies and Liu 1990; Francescutto 1991� when an
extremely small excitation bandwidth parameter and special sys-

tem initial conditions are employed. However, it was concluded
that the 1/3 subharmonic response only exists in the beginning of
a response realization, and once it disappears, it would not be
observed again. The contradiction in the observation of repeated
occurrence of the subharmonic response in this study and the
predictions in the literature may be due to different simulation
durations employed. In this study, the simulation duration is on
the order of 12,000 excitation cycles, significantly longer than the
600 cycles employed in previous studies.

Frequency of Occurrence

Stochastic system response characteristics, including transition
among various attraction domains �global bifurcation� and fre-

Fig. 1. System response in subharmonic resonance region. Time series of narrowband excitation amplitude �top� and corresponding response
amplitude �bottom� �cs=0.05, a1=1, a3=0.3, � f =3.6, � f

2=157, �=0.005�.

Fig. 2. Response–amplitude maps corresponding to time series
shown in Fig. 1
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quency of occurrence can be observed in the time histories and
response–amplitude maps. The frequencies of occurrence in these
maps are found to be attraction-domain dependent. As indicated
in Figs. 1 and 2, the frequencies of occurrence are relatively high
for both large and small amplitude harmonic responses, and low
for the 1/2 and 1/3 subharmonic responses. Note that the random-
ness in the excitation is independent of the attraction domain.
This indicates the dependency of the response–amplitude pertur-

bation behavior on the system characteristics and the attraction
domains.

Effect of Varying Excitation Bandwidth

The effects of varying the degree of randomness of the excitation
�i.e., excitation bandwidth� on the response behavior are demon-

Fig. 3. �a, b, c, and d� System response under varying excitation bandwidths in subharmonic resonance region. Time series of narrowband
excitation amplitude �top� and corresponding response amplitude �bottom� �cs=0.05, a1=1, a3=0.3, � f =3.6, � f

2=157, ���a� 0.001; �b� 0.005; �c�
0.01; �d� 0.05�.
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strated in Fig. 3. As the degree of randomness in the excitation
increases �increasing excitation bandwidth parameter ��, the re-
sponse time series exhibits more frequent amplitude jumps among
attraction domains. In addition, the total times of the response in
large-amplitude primary resonance also increases. Consequently,
the attraction–domain transition probability and the response–
amplitude perturbation probability density functions �PDF� are
related to the excitation bandwidth. As shown in the corre-
sponding response–amplitude maps �Fig. 4�, increasing excitation
randomness also results in spreading of the response–amplitude
distribution around the deterministic analytical response–
amplitude curves.

Effect of Varying Excitation Intensity

By reducing the variance of the excitation process, the total time
of the system response in the small-amplitude primary-resonance
domain increases as shown in Fig. 5. The excitation bandwidth
parameter employed is fixed in these cases, and thus the degree of
randomness in the excitation shows no significant change. Con-
sequently, the frequency of the response–amplitude jumps is ap-
proximately unchanged. However, the system response remains
longer in the lower-amplitude primary-resonance domain in every
visit with decreasing excitation variance. That is, the probability
of the system response in the lower-amplitude primary-resonance
domain increases as the excitation intensity �variance� decreases.
Therefore, the response attraction–domain transition probability is
affected by the excitation intensity. Note that in the response–
amplitude maps shown in Fig. 6, the density of the points in the
lower part increase as the excitation intensity decreases. Varia-

tions in the density of the response–amplitude maps also demon-
strate the influence of varying excitation variance on the system
response.

Predictions of Stochastic System
Response Behavior

To verify the prediction capability of the proposed semianalytical
method in characterizing the stochastic system response behavior
in the primary and subharmonic resonance regions described
above, analytical prediction of the system response in five cases,
�i�–�v�, with various excitation parameter sets �see Table 1� are
presented and compared to simulation results.

The system damping parameter, cs, and the linear and nonlin-
ear restoring force parameter, a1 and a3, respectively, are held
constant for these cases. To isolate the effects of varying the de-
gree of excitation randomness on the response behavior, the ex-
citation bandwidth parameter � is increased from cases �i� to �iv�,
while the excitation intensity �variance� is fixed.

Effects of Varying Excitation Randomness
on Attraction–Domain Transition

The system response behavior under increasing degree of excita-
tion randomness �i.e., increasing bandwidth parameter ��, with
constant excitation intensity, � f

2, is investigated in cases �i�–�iv�.
For these four cases, the normalized parameters ��= �� � /� f

2

and ��= �� � /� f
2, the attraction–domain probability transition ma-

trices K, and the normalized eigenvectors corresponding to the

Fig. 4. �a�, �b�, �c�, and �d� Amplitude response maps corresponding to times series shown in Figs. 3�a–d�, respectively
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unit eigenvalues are listed in Table 2. Note that �� and �� are
the normalized autocorrelation and cross-correlation, respectively,
of the cosine and sine components of the excitation envelop
process with a time lag equal to the central excitation period
�Ochi 1990�.

It is observed that the autocorrelation �� decreases and cross-
correlation �� increases as the excitation bandwidth parameter �
increases. Thus, the randomness in the processes of excitation
amplitude cosine and sine components is increased as expected.
As a result, the randomness in the excitation amplitude and phase

angle increases with the excitation bandwidth. Therefore, the de-
pendency of the stochastic behavior of the excitation parameters
on � is confirmed.

In the attraction–domain transition matrix K, as the excitation
randomness parameter � increases, the decreasing values of diag-
onal elements indicate increasing probability of the response ex-
iting the current attraction domain. The off-diagonal elements,
except for the zero entries and p�4 �1�, are increasing, albeit at
different rates with increasing degree of excitation randomness.
That is, the probability that an attraction domain becomes the

Fig. 5. �a and b� System response under varying excitation variance in subharmonic resonance region. Time series of narrowband excitation �top�
and corresponding response amplitude �bottom� �cs=0.05, a1=1, a3=0.3, � f =3.6, �=0.01, � f

2��a� 157; �b� 125�.

Fig. 6. �a and b� Amplitude response maps corresponding to times series shown in Figs. 5�a and b�, respectively
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destination domain of transition from another domain increases
with degree of excitation randomness. In the last column of Table
2, the probability of the response being in the large-amplitude
primary resonance domain p�D1�, increases with increasing band-
width parameter �, whereas the probability that the responses are
at the lower response amplitude level �i.e., either in the small-
amplitude harmonic, the 1/2 subharmonic, or the 1/3 subharmonic
domains� decreases as � increases. Thus, the trends of variation in
the p�Dd� observed in Table 2 agree with the stochastic response
behavior described earlier. Hence, the validity of the proposed
method in analyzing the response behavior under varying band-
width parameter � is also confirmed in the small-amplitude and
subharmonic resonance regions.

Effects of Varying Excitation Randomness
on Response–Amplitude Variance

To investigate the influence of varying excitation randomness on
the response–amplitude variance, the variances �d

2 �d=1,2 ,3 ,4�

of the response amplitude within the attraction domains Dd
R

�d=1,2 ,3 ,4� are calculated from p̃�R �Dd
R� �d=1,2 ,3 ,4�. The

results obtained from cases �i�–�iv� are tabulated in Table 3. Ob-
serve that the predicted �d

2 �d=1,2 ,3 ,4� increases with in-
creasing excitation bandwidth parameter � in all four coexisting
attraction domains, which is consistent with the response behavior
observed earlier in Fig. 3. In addition, �d

2 �d=1,2 ,3 ,4� varies
with attraction domains, reflecting the domain dependency of the
system response characteristics. Therefore, the predicted trends of
the response–amplitude variance of the nonlinear system under
varying excitation bandwidth parameter � by the proposed semi-
analytical method are also validated.

Effects of Varying Excitation Intensity
on Attraction–Domain Transition

The effects of varying excitation intensity �i.e., variance � f
2� on

the system response behavior are investigated in cases �iii� and

Table 1. Parameters of System Considered in Subharmonic Resonance Region

Case �i� �ii� �iii� �iv� �v�

System parameters Cs=0.05, a1=1, a3=0.3

�a� Excitation parameters

� f 3.6 3.6 3.6 3.6 3.6

� 0.001 0.005 0.01 0.05 0.01

� f
2 157 157 157 157 125

�b� Domain boundaries

Large-amplitude harmonic domain D1 �1.4, 50�

Small-amplitude harmonic domain D2 �0, 33.3�

1/2 subharmonic domain D3 �6.4, 23.0�

1/3 subharmonic domain D4 �2.2, 12.0�

Table 2. Effects of Varying Excitation Bandwidth on Response Attraction–Domain Transition Probability in Primary and Subharmonic Resonance
Regions

Case � �� �� Transition matrix, K
Normalized
eigenvector

�i� 0.001 0.999 0.00011 �
0.9977 0.0014 0.0014 0

0.0005 0.9986 0.0116 0.0385

0.0001 0 0.9802 0.0008

0.0015 0 0.0068 0.9607
� �

p�D1�
p�D2�
p�D3�
p�D4�

� =�
0.399

0.586

0.001

0.014
�

�ii� 0.005 0.996 0.00056 �
0.9959 0.0031 0.0039 0

0.0006 0.9969 0.0143 0.0742

0.0004 0 0.9566 0.0098

0.0031 0 0.0252 0.961
� �

p�D1�
p�D2�
p�D3�
p�D4�

� =�
0.426

0.547

0.009

0.018
�

�iii� 0.010 0.992 0.00112 �
0.9949 0.0031 0.0063 0

0.0008 0.9956 0.0195 0.0949

0.0017 0 0.939 0.0216

0.0026 0 0.0352 0.8835
� �

p�D1�
p�D2�
p�D3�
p�D4�

� =�
0.462

0.504

0.018

0.016
�

�iv� 0.050 0.958 0.00549 �
0.9935 0.0097 0.0183 0

0.001 0.9903 0.0389 0.1532

0.0047 0 0.8679 0.0846

0.0008 0 0.0749 0.7622
� �

p�D1�
p�D2�
p�D3�
p�D4�

� =�
0.608

0.352

0.029

0.011
�
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�v�. For these two cases, the value of normalized parameter �� and
�� �auto- and cross-correlation coefficients�, the attraction–
domain transition probability matrices K, and the normalized
eigenvectors corresponding to the unit eigenvalues are listed in
Table 4.

As shown in Table 4, little changes in the values of �� and ��
are observed when the excitation variance � f

2 decreases from
cases �iii� to �v�. Thus, the randomness in the excitation is not
significantly affected by the variations in the excitation intensity
but the behavior of the excitation amplitude still depends on the
excitation variance. In the transition matrices K, the complexity
of the transition behavior is reflected by the variations in the
off-diagonal elements. Under complex response attraction–
domain transitions �global bifurcation�, the trends of variations in
the probabilities of the response in the higher and lower ampli-
tude levels, respectively, is still accurately predicted as shown in
the last column of Table 4. That is, p�D1� decreases but �p�Di�
�i=2,3 ,4� increases with decreasing excitation variance � f

2. This
result agrees with the response characteristics observed in the
previous section.

Effects of Varying Excitation Randomness
on Response–Amplitude Distribution

As the degree of excitation randomness �i.e., bandwidth param-
eter �� increases from cases �i� to �iv�, Fig. 7 shows that the
response–amplitude probability mass in the higher level increases
in accordance with the response behavior observed earlier. In case
�iv�, although the simulations appear to show only a single mode
located in the higher amplitude level in the probability distribu-
tion, the long tail of the distribution in the lower amplitude level

indicates the existence of a less obvious mode in that region. The
less consistent match in the results of case �iv� in the lower am-
plitude level is probably due to insufficient samples in that region.
The comparisons of predictions with simulations for cases �i�, �ii�,
�iii�, and �iv� are shown in Fig. 8. Observe that the semianalytical
method predicts well the stochastic dependency of the small- and
large-amplitude responses on excitation bandwidth parameter �.

Effects of Varying Excitation Intensity
on Response–Amplitude Distribution

As the excitation variance, � f
2, decreases from cases �iii� to �v�,

Fig. 9 shows that the response–amplitude probability mass in the
higher level decreases in accordance with the response behavior
described earlier. By the proposed semianalytical method, the
same trend of variations in the response amplitude probability
distribution due to changes in excitation variance is captured as
shown in Fig. 9.

Comparisons with Existing Analytical Methods

Stochastic Averaging Method

According to Rajan and Davies �1988�; Davies and Liu �1990�;
and Koliopulos and Bishop �1993�, the suggested form of the
response–amplitude probability distribution can be expressed as

p�y� = C exp� − 2�2	

�
 + 	��
y	�
 + 	�2 +

��2 − 1�2

4�2

−
3��2 − 1�y

16�2 +
9y2

192�2
� �1�

and

y =
a3

a1
R2, 	 =

sC

2�a1

, � =
a3

a1
3� f

2, 
 =
�

2�a1

, � =
� f

�a1

�2�

where R�response amplitude; cs, a1, and a3�structural damping,
linear stiffness, and nonlinear stiffness coefficients, respectively;
and as previously defined, �, � f, and � f

2�excitation bandwidth
parameter, central frequency, and variance, respectively.

Table 3. Effects of Varying Excitation Bandwidth Parameter � on
Variance of Response Amplitude within Coexisting Attraction Domains
Dd

R �d=1,2 ,3 ,4�, Respectively, in Primary and Subharmonic Resonance
Regions

Variance �d
2 of response amplitude within attraction domain

Cases �i� �ii� �iii� �iv�

� 0.001 0.005 0.010 0.050

�1
2 0.0883 0.1623 0.2370 1.8192

�2
2 0.4738 0.5364 0.9796 2.1156

�3
2 0.4489 0.6716 0.8203 1.6155

�4
2 0.0397 0.1100 0.1885 0.8431

Table 4. Effects of Varying Excitation Variance on Response Attraction–Domain Transition Probability in Primary and Subharmonic Resonance Regions

Case � f
2 �� �� Transition matrix, K

Normalized
eigenvector

�iii� 157 0.992 0.00112 �
0.9949 0.0031 0.0063 0

0.0008 0.9956 0.0195 0.0949

0.0017 0 0.939 0.0216

0.0026 0 0.0352 0.8835
� �

p�D1�
p�D2�
p�D3�
p�D4�

� =�
0.462

0.504

0.018

0.016
�

�v� 125 0.997 0.00113 �
0.9936 0.0021 0.0040 0

0.0010 0.9979 0.0138 0.0894

0.0015 0 0.946 0.0155

0.0039 0 0.0362 0.8951
� �

p�D1�
p�D2�
p�D3�
p�D4�

� =�
0.243

0.733

0.011

0.013
�
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Quasi-Harmonic Method

From Koliopulos and Bishop �1993� the relationship between the
narrow band excitation amplitude A and the corresponding re-
sponse amplitude R is obtained as

y3 +
8

3
�1 − �2�y2 +

16

9
�1 − �2�2 + 4	2�2y� =

32

9
�, � =

A2a3

2a1
3

�3�

where the scaled parameters y, 	, and � are defined in Eq. �2�.
The response–amplitude probability distribution can be obtained
by a probability transformation rule between the random variable
� and y through the functional relationship defined in Eq. �3�
�Ochi 1990�. The PDF of � is obtained as �Koliopulos and Bishop
1993�

p��� =
1

�
e��/��, � =

a3� f
2

a1
3 �4�

Since Eq. �3� is a third-degree polynomial equation, for a
given �, there may exist three real solutions, with the smallest and
the largest magnitudes correspond to the coexisting stable �physi-

cally observable� small and large amplitude steady-state re-
sponses. The real intermediate magnitude solution, associated
with the unstable steady-state response, is physically unrealizable.
In this case, the probability mass associated with � will be trans-
ferred and distributed to the smallest and the largest values of y,
respectively, by a ratio  determined by the following equation
�Dimentberg 1971, 1988; Koliopulos et al. 1991; Koliopulos and
Bishop 1993; Koliopulos and Langley 1993�

 =

Ei��max

�
� − Ei��min

�
�

ln��max

�min
� − 1, Ei�x� =�

−�

x e�

�
d� �5�

where �max and �min�respective upper and lower bounds of �,
which corresponds to multiple solutions of Eq. �1�.

Comparisons of Analytical Predictions
and Simulation Results

The prediction capabilities of the proposed semianalytical method
developed earlier and the stochastic averaging method presented

Fig. 7. Variations in response amplitude probability distribution under varying excitation bandwidth parameter � in subharmonic resonance
region: �a� simulation; �b� prediction
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by Davies and Liu �1990� and the quasi-harmonic method
presented by Koliopulos and Bishop �1993� are examined. In
particular, the response–amplitude probability distributions pre-
dicted by these methods for two specific excitation bandwidths
selected by Koliopulos and Bishop �1993� are compared. In both
cases, �a� and �b�, the system and the excitation parameters are:
�cs=0.16, a1=1, a3=0.3, � f =2, �=0.01, � f

2=3.05�, whereas, the
excitation bandwidth parameter are �=0.02, and 0.08, re-

spectively. Note that corresponding to these system and excita-
tion parameters, the scaled parameters employed in the stochastic
averaging and the quasi-harmonic methods are �=2, 	=0.08,


=� / �2�a1�=0.01, �=0.91� and ��=2, 	=0.08, 
=0.04,
�=0.91�, respectively.

Prediction results of the semianalytical, stochastic, averaging,
and quasi-harmonic methods are shown in Fig. 10�a� for case �a�

Fig. 8. Variations in response amplitude probability distribution under varying excitation bandwidth parameter � in subharmonic resonance
region: �a� case �i�; �b� case �ii�; �c� case �iii�; and �d� case �iv�
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Fig. 9. Variations in response amplitude probability distribution under varying excitation variance, � f
2, in subharmonic resonance region:

�a� simulation; �b� prediction

Fig. 10. Response amplitude histogram and probability distributions predicted by semi-analytical �SE-AN�, quasi-harmonic �QH�, and stochastic
averaging �ST-AV� methods, respectively �cs=0.16, a1=1, a3=0.3, � f =2, � f

2=3.05�: �a� �=0.02; �b� �=0.08
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and Fig. 10�b� for case �b�. Comparisons are also made with the
response amplitude histogram obtained from simulations con-
ducted through the method described earlier. Observe that among
the analytical prediction methods, the one proposed in this study
agrees best with simulation results.

Concluding Remarks

Based on the results of this study, the following concluding
remarks are offered: The proposed semianalytical method is ca-
pable of accurately characterizing the stochastic response be-
havior of the nonlinear system subject to narrowband excitations
by predicting the response–amplitude probability distribution and
capturing the trends of variations in the response–amplitude sta-
tistical properties. In both the primary and the subharmonic reso-
nance regions, good agreements between the response–amplitude
probability distributions predicted by the semianalytical method
and obtained from simulation results are observed both qualita-
tively and quantitatively. In addition, trends of the variations in
the probability masses associated with the modes with variations
in excitation parameters �bandwidth and variance� are captured.

The analysis of the response behavior under narrowband exci-
tations has been successfully extended to the primary and subhar-
monic resonance regions. In previous studies, analytical methods
can only predict the response behavior in the primary resonance
region where only two attraction domains coexist. In this study,
we have demonstrated the capability of the proposed semianalyti-
cal method in predicting more complex response behavior in the
primary and subharmonic resonance regions where four attraction
domains coexist.

A significant improvement in the accuracy of predicting re-
sponse amplitude probability distributions is achieved by the
proposed semianalytical method. This is because the stochastic
nonlinear response behavior under narrowband excitation is ac-
curately characterized by the semianalytical method through
modeling the response attraction–domain transition and response–
amplitude perturbations.
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